PUGET SOUND
National Estuary Program

RESTORING NEARSHORE HABITAT FOR PUGET SOUND CHINOOK SALMON
This project advances Puget Sound Chinook salmon recovery planning for the nearshore based on recommendations from the Chinook Salmon Implementation Strategy.

What we’re doing
This project reviews the most recent scientific information about how young salmon use nearshore habitat to feed, grow and migrate to the ocean. This information will support better decisions as part of the Puget Sound Salmon Recovery Plan that was approved by NOAA. The project will:

- Synthesize recent nearshore science, plans, and policies
- Align regional and watershed recovery strategies for the nearshore
- Summarize data on juvenile Chinook salmon use of nearshore habitat to evaluate proposed restoration projects
- Improve monitoring methods for Common Indicators of shoreline condition
- Communicate the outcomes and recommendations to project sponsors to improve their project proposals

WHY IS THIS ISSUE IMPORTANT
Puget Sound Chinook salmon populations are threatened. Juvenile Chinook salmon need nearshore habitats to find food and to hide from predators in the shallow waters as they migrate out to the ocean. The objectives of this study were identified by salmon recovery partners as necessary immediate steps for advancing habitat recovery in the nearshore.

WHAT YOU CAN DO
Watersheds can use this information to update their recovery chapters with nearshore strategies and apply the products to monitoring and project evaluation. Participate in workshops and technical reviews that pertain to deliverables, and advance implementation at the local level for nearshore watersheds.

ABOUT THE PUGET SOUND PARTNERSHIP
The Puget Sound Partnership is the state agency leading the region’s collective effort to restore and protect Puget Sound. The Puget Sound Partnership brings together hundreds of partners to mobilize partner action around a common agenda, advance Sound investments, and advance priority actions by supporting partners.

FOR MORE INFORMATION
www.psp.wa.gov
Stacy Vynne McKinstry
Salmon Recovery Manager
Puget Sound Partnership
stacy.vynne@psp.wa.gov
360-489-2112
RESTORING NEARSHORE HABITAT FOR PUGET SOUND CHINOOK SALMON

This project advances Puget Sound Chinook salmon recovery planning for the nearshore based on recommendations from the Chinook Salmon Implementation Strategy.

Project outcomes

We produced three products that will advance Puget Sound Chinook salmon recovery planning for the nearshore: (1) a report on Puget Sound Nearshore Chinook Salmon Strategies, supporting the Puget Sound Salmon Recovery Plan nearshore update; (2) documentation of the Shoreline Armoring Common Indicator Protocol, which details measuring length and location of armor, material, condition, and toe elevation; and (3) creation of the Salmon Benefit Index (SBI) to aid in the prioritization of restoration and protection projects selected through the Puget Sound Acquisition and Restoration program (PSAR).

Success stories

The development of these products were dependent on many technical workshops and reviews, bringing together a broad community of Chinook salmon restoration practitioners. The goal is to inform the status of Chinook salmon recovery, and provide resources to aid in their recovery.

FUTURE OPPORTUNITIES

Watersheds can use this information to update their salmon recovery chapters with nearshore strategies and apply the products to monitoring and project evaluation. The armor protocol provides standards for future armor data collection and processing that allow for temporal comparisons of data. Incorporation of the SBI should provide a structured, scientifically-based framework for project ranking, facilitating better communication with local salmon recovery partners and higher quality project proposals.

1. Nearshore Chinook Salmon Strategies
2. Protocol for mapping armor
3. SBI memos: (1) Framework, (2) Calculation and elements, (3) Scoring comparisons with PSAR rankings, and (4) Uncertainties. The SBI calculator is a working example of SBI.

Project based on NTA 2016-0376