RESIDENTIAL SHORELINE LOAN PROGRAM FEASIBILITY STUDY

Since 2014, local Shore Friendly programs have engaged with hundreds of waterfront homeowners to encourage voluntary removal of damaging shoreline armor where erosion risk is low to moderate. Engineered soft shore protection techniques are an attractive protection alternative that benefits fish and wildlife. However, cost is a significant barrier to these projects and existing financial incentives are not sufficient to meet demand.

We aim to address this gap by developing a program that provides low-cost loans for Shore Friendly projects.

WHY THIS ISSUE IS IMPORTANT

Shoreline armor damages beaches and degrades critical habitat for fish and wildlife. As sea level rises, armor can cause more damage by preventing shoreline habitats from shifting inland. Waterfront homeowners are increasingly concerned about coastal flooding and interested in options like elevating and moving homes inland. When combined with armor removal, these adaptation measures can increase the resilience of both human and ecological communities.

WHAT YOU CAN DO

Waterfront homeowners can visit www.shorefriendly.org to learn about healthy beaches and resources available to help protect your property and Puget Sound.

Local Shore Friendly programs can help by noting promising armor removal, soft shore protection, and sea level rise adaptation projects unable to move forward without additional financial incentive. This record will support follow-up with willing homeowners once a loan program is operational.

ABOUT PUGET SOUND INSTITUTE

The Puget Sound Institute was established at the University of Washington to catalyze application of science by resource managers and policymakers engaged in Puget Sound recovery. We synthesize and integrate research findings and conduct original research to support development of strategies for improving the health of Puget Sound.

FOR MORE INFORMATION

www.pugetsoundinstitute.org
Aimee Kinney, Puget Sound Institute
aimeek@uw.edu, 253–254–7030 x8015
Project based on NTA 2018–0266